Quentin Stern
Hi there! I’m a postdoc in the Han Lab at Northwestern University. I did my PhD in Sami Jannin’s team at the CRMN in Lyon, France. During my PhD, I worked on dissolution dynamic nuclear polarization (dDNP) and its applications to chemistry. dDNP is a method where nuclear spins are hyperpolarized in the solid state at low temperatures (typically 1-2 K) before being dissolved and transferred to a liquid-state spectrometer to perform high-sensitivity liquid-state NMR experiments. Part of my work has focused on the understanding the dynamics of DNP at these low temperatures.
Moving to Northwestern University, I continued working on the fundamental aspects of DNP at low temperatures, but my focus is no longer on the applications to liquid-state NMR. Now, my aim is use to the concepts of low-temperature DNP to use model systems of nuclear spin qubit clusters in paramagnetic single crystals for quantum information processing. I aim at understanding and combating the bottleneck of most quantum information science, i.e., decoherence, leveraging the so-called frozen core and high spin polarizations (which lead to decreased magnetic noise)
Along my work, I’ve constantly used numerical simulations to get a better grasp of the experiments I was working on, by developing my own MATLAB scripts. That’s what I’m trying to share with our MARQUISE readership. I hope you’ll enjoy it!
Theory
Postulates of Quantum Mechanics
This series of posts lays out the foundational postulates of quantum mechanics using the two-level system of spin 1/2 particles as our model. In addition to a mathematical description of these postulates, MATLAB and Python code is included to show how to translate these ideas in a coding environment. These posts will provide the mathematical foundation for more complex concepts in quantum mechanics and magnetic resonance, and the building blocks for code development of spin dynamics.
Simulation
Basic NMR simulation
This series of posts shows how to simulate basic NMR experiments from scratch using MATLAB and Python using the density matrix formalism.
Publication list
2025
- Pokochueva, E. V., Le, N. H., Guibert, S., Gioiosa, C., Stern, Q., Tolchard, J., … & Jannin, S. (2025). Hybrid Polarizing Solids with Extended Pore Diameters for Dissolution Dynamic Nuclear Polarization. Chemistry‐Methods, 2400068.
- Cala, O., Bocquelet, C., Gioiosa, C., Torres, F., Cousin, S. F., Guibert, S., … Stern, Q., Bornet, A., & Jannin, S. (2025). Micromolar concentration affinity study on a benchtop NMR spectrometer with secondary 13C labeled hyperpolarized ligands. ACS omega.
- Stern, Q., Cui, J., Chaklashiya, R., Tobar, C., Judd, M., Nir-Arad, O., … & Han, S. (2025). P1 center network in high-pressure high-temperature diamonds is a readily accessible source of nuclear hyperpolarization at 14 T. ChemRxiv.
- Bocquelet, C., Rougier, N., Le, H. N., Veyre, L., Thieuleux, C., Melzi, R., … Stern, Q., Vaneeckhaute, E., & Jannin, S. (2024). Boosting 1H and 13C NMR signals by orders of magnitude on a bench. Science Advances, 10(49).
- Vaneeckhaute, E., Bocquelet, C., Rougier, N., Jegadeesan, S. A., Vinod-Kumar, S., Mathies, G., … & Jannin, S. (2025). Dynamic nuclear polarization mechanisms using TEMPOL and trityl OX063 radicals at 1 T and 77 K. The Journal of Chemical Physics, 162(15).
2024
- Vaneeckhaute, E., Bocquelet, …, Stern Q. & Jannin, S. (2024). Full optimization of dynamic nuclear polarization on a 1 tesla benchtop polarizer with hyperpolarizing solids. Physical Chemistry Chemical Physics, 26(33), 22049-22061.
- Chaklashiya, R. K., et al. (2024). Dynamic Nuclear Polarization Using Electron Spin Cluster. The Journal of Physical Chemistry Letters, 15, 5366-5375.
- Stern, Q., Verhaeghe, G., El Daraï, T., Montarnal, D., Le, N. H., Veyre, L., … & Jannin, S. (2024). Dynamic Nuclear Polarization with Conductive Polymers. Angewandte Chemie International Edition, e202409510.
- Elliott, S. J., Stern, Q., & Jannin, S. (2024). 13C-Formate as an Indirect Low-Temperature 1H Lineshape Polarimeter. Journal of Magnetic Resonance Open, 100162.
2023
- Chessari, A., Cousin, S. F., Jannin, S., & Stern, Q. (2023). Role of electron polarization in nuclear spin diffusion. Physical Review B, 107(22), 224429.
- Stern, Q., Reynard-Feytis, Q., Elliott, S. J., Ceillier, M., Cala, O., Ivanov, K., & Jannin, S. (2023). Rapid and Simple 13C-Hyperpolarization by 1H Dissolution Dynamic Nuclear Polarization Followed by an Inline Magnetic Field Inversion. Journal of the American Chemical Society, 145(50), 27576-27586.
- Barskiy, D. A., Blanchard, J. W., Budker, D., Stern, Q., Eills, J., Elliott, S. J., … & Koptyug, I. V. (2023). Possible Applications of Dissolution Dynamic Nuclear Polarization in Conjunction with Zero-to Ultralow-Field Nuclear Magnetic Resonance. Applied Magnetic Resonance, 54(11), 1221-1240.
- Stern, Q., Sheberstov. K. (2023). Simulation of NMR spectra at zero- and ultra-low field from A to Z – a tribute to Prof. Konstantin L’vovich Ivanov. Magnetic Resonance, 4, 87–109.
2022
- Elliott, S. J., Ceillier, M. et al. (2022). Simple and Cost-Effective Cross-Polarization Experiments under Dissolution-Dynamic Nuclear Polarization Conditions with a 3D-Printed 1H-13C Background-Free Radiofrequency Coil. Journal of Magnetic Resonance Open, 100033.
- Picazo-Frutos, R., Stern, Q. et al (2022). Zero- to Ultralow-Field Nuclear Magnetic Resonance Enhanced with Dissolution Dynamic Nuclear Polarization. Analytical Chemistry, 95(2), 720-729.
- Koptyug, I. V., Stern, Q. et al (2022). Frozen water NMR lineshape analysis enables absolute polarization quantification. Physical Chemistry Chemical Physics, 24(10), 5956-5964.
- Dey, A., Charrier, B., et al. (2022). Fine optimization of a dissolution dynamic nuclear polarization experimental setting for 13C NMR of metabolic samples, Magnetic Resonance, 3, 183-202.
2021
- Stern, Q., Cousin, S. et al. (2021). Direct observation of hyperpolarization breaking through the spin diffusion barrier. Science Advances, 7(18), eabf5735.
- Ceillier, M., Cala, O. et al. (2021). An automated system for fast transfer and injection of hyperpolarized solutions. Journal of Magnetic Resonance Open, 8, 100017.
- Elliott, S. J., Stern, Q., et al (2021). Practical dissolution dynamic nuclear polarization. Progress in Nuclear Magnetic Resonance Spectroscopy, 126, 59-100.
- El Daraï, T., Cousin, S. F., et al (2021). Porous functionalized polymers enable generating and transporting hyperpolarized mixtures of metabolites. Nature Communications, 12(1), 1-9.
- Elliott, S. J., Stern, Q., & Jannin, S. (2021). Solid-state 1 H spin polarimetry by 13 CH 3 nuclear magnetic resonance. Magnetic Resonance, 2(2), 643-652.
- Elliott, S. J., Stern, Q. et al (2021). Protonation tuned dipolar order mediated 1H→ 13C cross-polarization for dissolution-dynamic nuclear polarization experiments. Solid State Nuclear Magnetic Resonance, 116, 101762.
- Elliott, S. J., Cala, et al. (2021). Boosting dissolution-dynamic nuclear polarization by multiple-step dipolar order mediated 1H→ 13C cross-polarization. Journal of Magnetic Resonance Open, 8, 100018.
- Elliott, S. J., Cala, O et al. (2021). Pulse sequence and sample formulation optimization for dipolar order mediated 1 H→ 13 C cross-polarization. Physical Chemistry Chemical Physics, 23(15), 9457-9465.
2020
- Elliott, S. J., Cousin, S. F. et al. (2020). Dipolar order mediated 1 H→ 13 C cross-polarization for dissolution-dynamic nuclear polarization. Magnetic Resonance, 1(1), 89-96.
- Dey, A., Charrier, B., Martineau, et al. (2020). Hyperpolarized NMR metabolomics at natural 13C abundance. Analytical chemistry, 92(22), 14867-14871.
2015
2013